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Abstract  (98 words)

Most tasks get faster with practice.  This holds across task size and task type.  Learning curves plot time to

complete a task as a function of practice. Such curves generally follow what is called a power law, thus,

they are often said to conform to "the power law of practice".  Cognitive psychology has shown that the

power law of practice is ubiquitous, and cognitive modeling has explained both the general speedup and

variability in performance, which previously was taken to be noise. Research is ongoing to find out why it

is ubiquitous and where it does not apply.
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The learning curve

Most tasks get faster with practice.  This is not surprising because we have all seen this and perhaps know

it in some intuitive sense.  What is surprising is that the rate and shape of improvement is fairly common

across tasks.  Figure 1 shows this for a simple task plotted both on linear and log-log coordinates.  The

pattern is a rapid improvement followed by ever lesser improvements with further practice. Such negatively

accelerated learning curves are typically described well by power functions, thus, learning is often said to

follow the "power law of practice".  Not shown on the graph, but occurring concurrently, is a decrease in

variance in performance as the behavior reaches an apparent plateau on a linear plot.  This plateau masks

continuous small improvements with extensive practice that may only be visible on a log-log plot where

months or years of practice can be seen. The longest measurements suggests that for some tasks

improvement continues for over 100,000 trials.

There are some related regularities.  There is evidence to suggest that standard deviation and skew in

performance time also decrease according to a power law, but with worse correlations.  Indeed, in some

cases the decrease in standard deviations appears to cause the improvement, because the minimum time to

perform a task does not change (Rabbit & Banerji, 1989).

The power law of practice is ubiquitous.  From short perceptual tasks to team-based longer term tasks of

building ships, the breadth and length of human behavior, the rate that people improve with practice appears

to follow a similar pattern.  It has been seen in pressing buttons, reading inverted text, rolling cigars,

generating geometry proofs and manufacturing machine tools (cited in Newell and Rosenbloom, 1981),

performing mental arithmetic on both large and small tasks (Delaney, Reder, Staszewski, & Ritter, 1998),

performing a scheduling task (Nerb, Ritter, & Krems, 1999), and writing books (Ohlsson, 1992).  Further

examples are noted in reviews (e.g., Heathcote, Brown, & Mewhort, in press).  In manufacturing this curve

is called a progress function.  You can see it for yourself by taking a task, nearly any task, and timing how
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long it takes to complete over 10 trials, or better over a hundred trials.  For example, try reading this article

upside down.  The time per paragraph will generally decrease, but with some differences caused by the

different words and paragraph lengths.

In general, the more averaging, the smoother the curve.  The learning curve appears smoother when the data

is averaged across subjects, across tasks, or both. When the tasks are known to vary in difficulty, such as

different complex mental arithmetic problems (e.g., 27x5 and 23x28), the learning curve only appears when

averaging is performed because the different problems naturally take different times.  Even when problems

are of comparable difficulty, subjects may use different strategies. For example, arithmetic problems can be

solved by two strategies, retrieval and calculation.  The power law applies across strategies, but the fit is

better to each strategy (Delaney et al., 1998), or even an individual's strategies (Heathcote et al, in press).

Averaging can mask important aspects of learning.  If the tasks vary in difficulty, the resulting line will not

appear as a smooth curve, but bounce around.  Careful analysis can show that different amounts of transfer

and learning are occurring on each task.  For example, solving the problem 22x43 will be helped more by

previously solving 22x44 than by solving 17x38 because there are more multiplications shared between

them.  Where sub-tasks are related but different, such as sending and receiving Morse code, the curves can be

related but visibly different (Bryan & Harter, 1897).

The learning curve has implications for learning in education and everyday life.  It suggests that practice

always helps improve performance, but that the most dramatic improvements happen first.  Another

implication is that with sufficient practice people can achieve comparable levels of performance.  For

example, extensive practice on mental arithmetic (Staszewski reported in Delaney et al., 1998) and on digit

memorization have turned average individuals into world class performers.

To sum up, the learning curve is visible with enough aggregation of dissimilar tasks or across similar tasks

down to the level of individual subject's strategies.
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Mathematical definitions

The shape of the curve is negatively accelerated -- further practice improves performance, but with

diminishing returns.  Power laws and exponentials are both functions that provide this shape.

Mathematical definitions are given in Table 1.   The exact quality of the fit depends on innumerable details

of averaging, the precise function used, and the scale.  For example, the full power law formula is the most

precise, but it has additional terms that are difficult to compute; and the asymptote is usually only visible

when there are over 1,000 practice trials (Newell & Rosenbloom, 1981).  The typical power law formula is

simpler, but leaves out previous practice.  When using this formula, the constants for a set of data can be

easily computed by taking the log of the trial number and log of task time and computing a linear

regression.  That is, fitting a regression in log-log space.

In general, the power function fit appears to be robust, regardless of the methods used (Newell &

Rosenbloom, 1981).  However, recent work (Heathcote et al, 2000) suggests that the power law might be

an artifact arising from averaging (Anderson & Tweney, 1997), and that the exponential function may be

the best fit when individual subjects employing a single strategy are considered.  Distinguishing between

the power and exponential functions is not just an esoteric exercise in equation fitting.  If learning follows

an exponential, then learning is based on a fixed percentage of what remains to be learnt.  If learning

follows a power law, then learning slows down.

Regardless of the functional form of the practice curve, there remain some systematic deviations that cause

problems, at the beginning and end of long series.  The beginning deviations may represent an encoding

process. For example, it may be necessary to transform a declarative description of a task into procedures

before actual practice at the task can begin (Anderson & Lebiere, 1998); the residuals at the end may

represent approaching the minimum time for a given task as defined by an external apparatus.  These effects

appear in Figure 1 as well.
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Table 1.  Functions that fit practice data.

[format according to conventions adopted for encyclopedia]

Time =  MinTime +const. (TrialNumber + PrevPractice) ^ -(constant for task)
[Full Power law formula]

Time =  constant * (TrialNumber) ^ -(constant for task)
[Typical power law formula]

Time =  constant *  e ^ -(TrialNumber +PrevPractice)
[Simple exponential formula]

Process based explanations of the learning curve

The power law of learning is an important regularity of human behavior that all theories of learning must

address.  For example, Logan (1988) suggests that the retrieval of memory traces guides responding in

speeded tasks.  Response times represent the fastest retrieval time among the memory traces racing to guide

the response. The power law falls out of this analysis, because with practice the number of redundant

memory traces increases, which, in turn, increases the chances of observing fast retrieval times.  Olhsson's

(1996) theory notes how the learning curve could arise out of error correction.  Different assumptions (e.g.,

how fast errors are caught) give rise to different curves including the exponential and power law.  The

learning curve has also been demonstrated for connectionist models as well.

ACT-R (J. R. Anderson & Lebiere, 1998) and Soar (Newell, 1990), two cognitive architectures, generally

predict a power law speedup, but for different reasons.  ACT-R does this because rules and memory traces

are strengthened according to a power law based on the assumption that the cognitive system is adapted to

the statistical structure of the environment (J. R. Anderson & Schooler, 1991).  Several models in Soar (see

related entry) have been created that model the power law (e.g., Nerb et al., 1999; Newell, 1990).  These

models explain the power law as arising out of hierarchical learning (i.e., learning parts of the environment

or internal goal structure) that initially learns low level actions that are very common and thus useful, and

with further practice more useful larger patterns are learned but that occur infrequently.  The Soar models

typically vary from human learning in that they learn faster than humans, and they do not learn for as long
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a period.  Soar and ACT-R also predict variance in the improvement on all tasks due to different amounts of

transfer across problems and learning episodes.  Figure 2 shows how such a model can predict differential

transfer as well as continuous learning as it appears in human data.

Summary

The learning curve is a success story for cognitive psychology, which has shown that learning is ubiquitous

and has provided mathematical accounts of the rate.  The learning curve is also a success story for cognitive

modeling, which has explained the curve and the noise inherent in it partly as differences in transfer of

knowledge between tasks and how the curve arises out of mechanisms necessary for processing.  The

multiple explanations also suggest that there may be multiple ways that the curve can arise.
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Related Topics
Soar, ACT-R, learning theories.
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Figure 1 a & b.  Figure 1.  Time to perform a simple task on a linear and log-log plot as well as a power

law fit to the data (adapted from Seibel, 1963).  [figures available as postscript files]
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Figure 2.  The time to perform a trouble shooting task by both a cognitive model and a subject (Ritter &

Bibby, 1997).


